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The highly productive fisheries of Alaska are located in seas projected to experience strong global change,
including rapid transitions in temperature and ocean acidification-driven changes in pH and other chem-
ical parameters. Many of the marine organisms that are most intensely affected by ocean acidification
(OA) contribute substantially to the state’s commercial fisheries and traditional subsistence way of life.
Prior studies of OA’s potential impacts on human communities have focused only on possible direct eco-
nomic losses from specific scenarios of human dependence on commercial harvests and damages to mar-
ine species. However, other economic and social impacts, such as changes in food security or livelihoods,
are also likely to result from climate change. This study evaluates patterns of dependence on marine
resources within Alaska that could be negatively impacted by OA and current community characteristics
to assess the potential risk to the fishery sector from OA. Here, we used a risk assessment framework
based on one developed by the Intergovernmental Panel on Climate Change to analyze earth-system glo-
bal ocean model hindcasts and projections of ocean chemistry, fisheries harvest data, and demographic
information. The fisheries examined were: shellfish, salmon and other finfish. The final index incorpo-
rates all of these data to compare overall risk among Alaska’s federally designated census areas. The anal-
ysis showed that regions in southeast and southwest Alaska that are highly reliant on fishery harvests
and have relatively lower incomes and employment alternatives likely face the highest risk from OA.
Although this study is an intermediate step toward our full understanding, the results presented here
show that OA merits consideration in policy planning, as it may represent another challenge to Alaskan
communities, some of which are already under acute socio-economic strains.

Published by Elsevier Ltd.
Introduction

Marine environments around the world are now subject to
unprecedented pressures resulting from human development,
including increases in temperatures and atmospheric carbon diox-
ide (CO2) concentrations, changes in terrestrial runoff, and intense
exploitation of resources (Doney, 2010; Halpern et al., 2008). In
Alaska (Fig. 1), highly productive commercial and subsistence
fisheries are located in regions projected to experience rapid
transitions in temperature, pH, and other chemical parameters,
crossing distinct geochemical thresholds beginning this decade
(Fabry et al., 2009; Steinacher et al., 2009; Mathis et al., in press;
Cross et al., 2013). Ocean acidification (OA), the term used to
describe the progressive decrease in marine pH and carbonate
ion concentration driven by the uptake of anthropogenic CO2, is a
global phenomenon with localized effects on marine species. These
effects are predominantly negative, although there is some
variability within species groups (Barton et al., 2012; Kroeker
et al., 2013a; Whittmann and Pörtner, 2013). Many of the marine
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Fig. 1. Map showing the location of the major continental shelf seas around Alaska.
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groups that are most intensely affected, such as mollusks and other
shellfish, contribute substantially to Alaska’s highly productive
commercial fisheries and traditional subsistence way of life. Unfor-
tunately, end-to-end assessments of how changes in seawater
chemistry could affect key resources for specific human communi-
ties are limited in both scope and geographic coverage (Brander
et al., 2012; Cooley et al., 2009; Cooley and Doney, 2009; Narita
et al., 2012), and there has been no specific focus on Alaska or
any other high-latitude region to date. To address this critical
knowledge gap, we synthesized natural and social science data to
assess the risk OA poses to Alaska’s fishery sector.

Living marine resources are a critical part of Alaska’s natural
wealth portfolio that support a range of industries and activities,
including commercial and subsistence fishing, tourism, and natural
resource extraction. The revenue and protein from these sources
provide economic and nutritional benefits reaching far outside
the state’s boundaries, to the U.S. Pacific Northwest and beyond.
The state’s 33,000 km coastline is 50% greater than the rest of the
U.S. shoreline combined and produces about half the total com-
mercial fish catch in all U.S. waters. The commercial fish catch also
helps maintain the U.S. balance of trade on the global market. Alas-
ka’s commercial harvests had an estimated wholesale value of
$4.6 billion and supported almost 90,000 full-time-equivalent jobs
in the state in 2009 (Northern Economics, Inc., 2011). At the same
time, the sport and personal fishing industry supported another
16,000 in-state jobs, and $1.4 billion of angler spending
(Southwick Associates, Inc. et al., 2008). Fishing-related tourism
yields over $300 million a year in revenue for Alaska, and makes
up approximately half of the state’s total economic income from
tourism (Southwick Associates Inc. et al., 2008). Moreover, approx-
imately 17% of the Alaskan population, roughly 120,000 people,
depend on subsistence fishing for food, with 95% of households
participating in subsistence activities using fish, and 83% harvest-
ing fish. These activities are central to many cultural customs,
and additionally important sources of employment and nutrition
(Fall, 2012), with two-thirds of the entire state population living
along the coast (U.S. Census Bureau, 2011). For example, the Bering
Sea directly or indirectly provides over 25 million pounds of sub-
sistence food for Alaska residents, primarily Alaska Natives in small
coastal communities.

Ocean acidification near Alaska

Since the pre-industrial era, human activities have increased
the atmospheric CO2 concentration by about 40% to values now
at 400 ppm, which is higher than at any point during the last
800,000 years (Lüthi et al., 2008). Meanwhile, the ocean has
absorbed more than 25% of the total emitted anthropogenic CO2
Please cite this article in press as: Mathis, J.T., et al. Ocean acidification risk asse
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(Feely et al., 2013; Sabine and Feely, 2007; Sabine and Tanhua,
2010), helping to offset some of the atmospheric consequences of
humanity’s waste emissions. The oceanic uptake of CO2 triggers a
series of well-understood reactions in the surface ocean that has
profoundly changed seawater chemistry around the world (e.g.
Doney et al., 2009; Fabry et al., 2008; Feely et al., 2004, 2008,
2009; Orr et al., 2005). This mechanism of change has already
reduced the global surface ocean pH by about 0.1 units (e.g.
Byrne et al., 2010; Feely et al., 2004), making the ocean 30% more
acidic than in pre-industrial times. Carbonate ions (CO3

2�) naturally
found in seawater partially neutralize this reaction and slow the
decline in pH. However, this buffering mechanism depletes the
seawater of CO3

2�, which makes it more difficult for organisms like
mollusks and corals to create and maintain their hard shells and
skeletons. The progression of OA is often discussed in terms of
the ‘‘saturation state’’ (X) of calcium carbonate minerals (CaCO3),
which is a measure of the thermodynamic potential of a mineral
to form or dissolve. When the X for aragonite (Xarag) and calcite
(Xcal) are below 1.0, the water is corrosive to CaCO3 minerals. A
comprehensive review of OA chemistry can be found in Gattuso
and Hansson (2011).

High-latitude oceans, like those around Alaska (Fig. 1), have
naturally low CO3

2� concentrations and are thus considered to be
more vulnerable to the impacts of OA on shorter timescales
(Fabry et al., 2009), because additional losses of CO3

2� from OA rep-
resents a much greater proportional change to the system. Waters
circulating along the coastline of Alaska are derived from CO2-rich
waters that are upwelled in the North Pacific, where anthropogen-
ically induced pH changes have already been directly observed
(Byrne et al., 2010). As these waters flow generally northward into
the Bering Sea, with some eventually entering the Arctic Ocean,
low sea surface temperature and increased solubility of CO2 pro-
motes naturally low CO3

2� surface concentrations (Key et al.,
2004; Orr, 2011; Orr et al., 2005). Uptake of anthropogenic CO2 fur-
ther reduces the surface CO3

2� concentrations, pushing the high-
latitude waters closer to the threshold of undersaturation with
respect to aragonite (Mathis et al., 2011a). Waters around Alaska
are also subject to regional physical and biological processes that
exacerbate the progression of OA by additionally decreasing pH
and CO3

2�, or increasing the partial pressure of CO2 (pCO2).
In the western Arctic Ocean, which encompasses the Chukchi

and Beaufort Seas (Fig. 1), potentially corrosive waters (Xarag as
low as 0.5 and Xcal as low as 0.9) are found in the subsurface layer
of the central Canada basin (e.g. Jutterström and Anderson, 2010;
Yamamoto-Kawai et al., 2009), on the Chukchi Sea shelf (Bates
et al., 2009; Mathis and Questel, 2013), and in outflow waters on
the Canadian Arctic Archipelago shelf (Azetsu-Scott et al., 2010).
In the Chukchi Sea, waters corrosive to CaCO3 occur seasonally in
the bottom waters due to the combination of natural respiration
processes and the intrusion of anthropogenic CO2 (Bates et al.,
2009; Mathis and Questel, 2013). Seasonally high rates of summer-
time phytoplankton primary production there drive a downward
export of organic carbon that is remineralized back to CO2, which
in turn increases the pCO2 and lowers the pH of subsurface waters.
The seasonal biological influence on the pH of subsurface waters
amplifies existing impacts of OA (Bates et al., 2013; Mathis and
Questel, 2013). Aragonite undersaturation has been observed in
bottom waters of the Chukchi Sea in July, August, September,
and October (Bates et al., 2009, 2013; Mathis and Questel, 2013).

Unlike the Chukchi Sea, the Beaufort Sea shelf (Fig. 1) is rela-
tively narrow with a limited physical supply of nutrients (e.g.
Carmack and Wassmann, 2006). Rates of phytoplankton primary
production over the shelf have been estimated at �6–12 g C m�2

yr�1 (Anderson and Kaltin, 2001; Macdonald et al., 2010), com-
pared to P300 g C m2 yr�1 (i.e. Macdonald et al., 2010; Mathis
et al., 2009) in the Chukchi Sea. Although respiration of this small
ssment for Alaska’s fishery sector. Prog. Oceanogr. (2014), http://dx.doi.org/
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amount of organic matter at depth is not likely to lower subsurface
pH markedly, OA in the Beaufort Sea may nevertheless worsen due
to loss of Arctic sea ice, as the ice dampens the transfer of wind
energy and limits upwelling. During an observed upwelling event
in the Beaufort Sea, upper halocline water, replete in CO2 and
undersaturated in aragonite, reached the surface and moved all
the way inshore along the Beaufort shelf, covering thousands of
square kilometers (Mathis et al., 2012). Although some level of
storm-driven upwelling is typical in this region, especially in
autumn, land-fast as well as pack ice has historically returned
before major late-autumn storm systems begin to pass through
the region. In recent years, the western Arctic has seen an unprec-
edented loss of both sea ice extent and volume, so the shelves are
staying sea ice-free longer each year through September and Octo-
ber while storm frequency and intensity reach their annual peak. In
the future, the Beaufort shelf is likely to be persistently, if not con-
tinually, exposed to waters that are undersaturated in aragonite as
sea ice cover continues to diminish under warming conditions
(Mathis et al., 2012).

Much like the Chukchi Sea, the Bering Sea (Fig. 1) experiences
seasonal variability in primary production and remineralization
of organic matter (Cross et al., 2012; Mathis et al., 2011b), which
both control the carbonate chemistry of the water column (Cross
et al., 2013). Biological production decreases the pCO2 at the sur-
face (Bates et al., 2011; Cross et al., in press) and increases X in
summer (Mathis et al., 2011b). The pCO2 can range from 150 to
400 latm in the surface mixed layer, while Xarag oscillates
between an annual maximum of 3.5 and a minimum of 1.2. The
only surface locations where aragonite has been observed to be
undersaturated were where sea ice melt or river runoff predomi-
nated, both of which are low in total alkalinity (TA) relative to mar-
ine waters (Mathis et al., 2011b). Export and remineralization of
large quantities of organic matter from surface blooms sharply
increases the pCO2, lowers pH, and decreases X near the bottom,
particularly in summer and autumn months. Moored sensors near
the bottom showed that pCO2 levels exceed 500 latm by early June
and remain high well into the autumn, indicating that bottom
waters are likely continuously undersaturated in aragonite for sev-
eral months each year (Mathis et al., in press), primarily due to nat-
ural respiration. However, the extent, duration, and intensity of
these undersaturation events will likely increase as anthropogenic
CO2 inventories continue to rise in the water column and average
X declines. The timing and duration of these undersaturation
events could be significant for the development of larval and juve-
nile calcifiers in the region (e.g. Long et al., 2013a,b).

Unlike the vast continental shelf regions to the north, the Gulf of
Alaska (Fig. 1) does not have seasonal sea ice cover. However, it
receives both low-alkalinity water (and hence lower X) from gla-
cial runoff (Reisdorph and Mathis, in press; Evans et al., 2014)
and upwelling of waters that are rich in CO2 and undersaturated
in aragonite from the deep Gulf of Alaska (Evans et al., 2013).
Throughout most of the year, alongshore winds create a downwel-
ling environment that keeps deeper water from penetrating onto
the shelf. However, in summer these winds relax, allowing the
waters that are undersaturated in aragonite to penetrate the inner
shelf, causing the saturation horizon for aragonite to become as
shallow as 75 m (Evans et al., 2013). Although the narrow conti-
nental shelf of the Gulf of Alaska is more than three times as deep
as the Bering and Chukchi shelves, there is still a considerable
remineralization of organic matter at depth that further drives a
reduction in pH and X in the bottom waters.

Alaska’s marine organisms and ocean acidification

OA appears to act more strongly on certain species and types of
organisms than others (Kroeker et al., 2013a; Ries et al., 2009;
Please cite this article in press as: Mathis, J.T., et al. Ocean acidification risk asse
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Whittmann and Pörtner, 2013; Table 1). More calcifying organisms
than non-calcifiers clearly exhibit significant negative responses
(Kroeker et al., 2013b; Long et al., 2013a,b), and lower pH environ-
ments alter ecosystem composition toward dominance by non-cal-
cifying organisms (Hall-Spencer et al., 2008; Wootton et al., 2008).
Mollusks appear to be the calcifying group most negatively
affected by OA. However, mollusks represent a very small fraction
of Alaska’s marine harvests, and the specific OA responses of most
species harvested in Alaska, mollusks and others, have not yet been
fully studied. We must therefore infer responses from studies on
similar mollusk species (Table 1) and on meta-analyses of mollusks
overall (e.g. Kroeker et al., 2013a), which suggest that it is more
likely than not that harvested mollusk species in Alaska will expe-
rience negative effects from OA.

The biological OA responses of only two commercially impor-
tant Alaskan crustacean species have been directly studied. Both
red king crab (Paralithodes camtschaticus) and Tanner crab (Chion-
oecetes bairdi and C. opilio) species exhibited negative responses
to high-CO2, lower-pH water (Long et al., 2013a,b). Growth of red
king crab was slowed and molting success decreased in waters
with a pH of 7.8, and crabs died in highly acidified conditions
(pH = 7.5). A similar pattern was observed for Tanner crabs in
waters with a pH of 7.5, although they had a higher survival rate.
Studies on crustaceans from other locations also show negative
effects on core physiological processes in response to decreased
pH (Pane and Barry, 2007; Walther et al., 2010). This is particularly
important in the early stages of development, when organisms
tend to be more sensitive. In addition, species inhabiting cold, Arc-
tic waters show narrower thermal tolerances in response to higher
CO2 levels (Walther et al., 2010). In several high-latitude species,
negative responses to decreased pH are particularly strong when
combined with other stressors such as increasing temperature
(Enzor et al., 2013; Strobel et al., 2012). Moreover, deep-water spe-
cies may be less tolerant to changes in pH due to the natural stabil-
ity of their chemical environment (Pane and Barry, 2007).

Commercially and nutritionally important finfish appear less
likely to experience direct harm from higher CO2 levels and lower
pH associated with OA, yet evidence suggests that possible food-
web changes caused by OA could indirectly affect these fishes.
Marine fishes with high metabolic rates and well-developed acid-
base regulatory systems are believed to have sufficient capacity
to respond to elevated environmental CO2 levels (Melzner et al.,
2009; Pörtner, 2008). Several studies have demonstrated that
growth rates of juveniles and sub-adults of temperate and boreal
marine fishes are not negatively impacted by CO2 levels in excess
of those predicted to result from OA (Foss et al., 2003, 2006). Juve-
nile walleye Pollock (Gadus chalcogrammus), an important Alaskan
species, also demonstrated no significant negative effects from
exposure to OA (Hurst et al., 2012). While experiments with eggs
and larvae of walleye pollock did not show detrimental effects
from rearing in low pH (Hurst et al., 2013), experiments on Atlantic
cod (Gadus morhua) and Atlantic herring (Clupea harengus) have
suggested that some commercially important boreal species can
be negatively affected by OA (Franke and Clemmesen, 2011;
Frommel et al., 2012). Potentially of larger concern for commercial
fisheries are indirect effects: the reduction of productivity or
changes in species composition of lower trophic levels that may
happen as a result of OA, and the resulting effects on predatory fin-
fish if their preferences are inflexible or prey is scarce (e.g. Kaplan
et al., 2010). Successful recruitment of marine fishes is dependent
upon the availability of sufficient prey resources that meet specific
nutritional requirements (Litzow, 2006). Pteropods, which calcify
the more soluble CaCO3 mineral aragonite, are a prey for pelagic
fish in subarctic and arctic regions (Orr et al., 2005). In Alaskan
waters, pteropods are thought to be important prey for juvenile
salmon (Aydin et al., 2005; Karpenko and Koval, 2012) and other
ssment for Alaska’s fishery sector. Prog. Oceanogr. (2014), http://dx.doi.org/
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Table 1
Breakdown of the top 10 commercially important species, ecologically important species, and other economically important species in Alaska and the current state of knowledge
regarding the physiological impact of ocean acidification on these organisms.

Species (ranked by NMFS
2011 economic value)

Physiological impacts References

Top 10 commercially
important species

1 Walleye pollock, Theragra
chalcogramma

Increase otolith deposition rate in juveniles Hurst et al. (2012) and Hurst et al.
(2013)

2 Sockeye salmon,
Oncorhynchus nerka

N.D.

3 Pacific halibut, Hippoglossus
stenolepis

N.D.

4 Pacific cod, Gadus
macrocephalus

No reduction in growth efficiency Hurst et al. (unpublished data)

5 Pink salmon, Oncorhynchus
gorbuscha

N.D.; modeled growth decreases if pteropods decline Aydin et al. (2005)

6 Sablefish, Anoplopoma
fimbria

N.D.

7 Snow Crab, Chionoecetes
(any)

Uncompensated acidosis in Tanner crab Pane and Barry (2007)

8 King Crab, Paralithodes Lower survival, growth, and calcium content Sigler et al. (2008)
9 Chum salmon, Oncorhynchus

keta
N.D.

10 Yellowfin sole, Limanda
aspera

N.D.

Ecologically important
species

Shrimp, Pandalus borealis No negative effects on larval fertilization success or
development time

Bechmann et al. (2011)

Copepod, Calanus glacialis No significant effect on egg production; pH 6.9 delayed egg
hatching and reduced overall hatching success

Weydmann et al. (2012)

Shelled pteropod, Limacina
helicina

CaCO3 precipitation rate decrease, shell exterior dissolution Orr et al. (2005), Fabry et al. (2008),
Comeau et al. (2010 Plos One), and
Bednaršek (2014)

Cold water corals, multiple Guinotte and Fabry (2008), Fish and
crabs, particularly juveniles, use coral
habitat as refuge and as focal sites of
high prey abundance Stone et al.
(2005)

Other economically
important species

Dungeness crab, Cancer
magister

Temporary acid-base shift followed by compensation Pane and Barry (2007)

Spider crab, Hyas araneus Slower larval development and reduced larval growth and
fitness

Walther et al. (2009)

Edible crab, Cancer pagurus High CO2 and temperature enhanced sensitivity, reduced
protein synthesis rate

Metzger (2007)

Pacific oyster, Crassostrea
gigas

Decreased growth and survival Gazeau et al. (2007) and Waldbusser
(2001)

Olympia oyster, Ostreola
conchaphila

N.D.

Pinto abalone, Haliotis
kamtschatkana

Decreased larval survival, increased shell abnormalities Crim et al. (2011)

Giant scallop, Placopecten
magellanicus

N.D.
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harvested species (Moss et al., 2009). Recent studies of natural
pteropod populations in the Southern Ocean in conditions similar
to those currently observed in coastal Alaska have shown rapid
and significant shell dissolution (Bednarŝek et al., 2012).

Risk assessments

The heavy dependence of humans on marine organisms in
Alaska implies that ecosystem services based on these species
could change as OA progresses (Cooley et al., 2009). Early studies
of OA’s potential human impacts have focused on direct macroeco-
nomic losses likely from specific scenarios of dependence, com-
mercial harvests, and damages to marine species (Brander et al.,
2012; Cooley and Doney, 2009; Narita et al., 2012). However, indi-
rect microeconomic impacts due to climate change are also likely
to manifest, such as changes in food security or shifts in livelihoods
(e.g. Allison et al., 2009; Battisti and Naylor, 2009; Cooley et al.,
2012; Lobell et al., 2008). Because Alaskans involved in the fishery
sector may have alternatives for employment, food sources, and
recreational activities, risk assessment offers a more flexible
Please cite this article in press as: Mathis, J.T., et al. Ocean acidification risk asse
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approach for considering the complex landscape of factors affect-
ing community risk.

In this study, we used the best available and most recent chem-
ical, biological, and socio-economic data specific to Alaska to assess
current patterns of human dependence on marine resources within
the state that could be negatively impacted by OA. Using a risk and
vulnerability framework based on the Intergovernmental Panel on
Climate Change (IPCC) Special Report on Managing the Risks of
Extreme Events and Disasters to Advance Climate Change Adapta-
tion (SREX; Cardona et al., 2012), we relate multiple oceanographic
variables to Alaskans’ dependence on fisheries and marine ecosys-
tem resources, while also considering demographic and nutritional
characteristics of regional human communities around the state. In
Section ‘Materials and methods’, we describe the framework, geo-
graphic regions addressed, and other data used. By synthesizing
multiple datasets, we were able to make an initial assessment of
current conditions throughout the state. From this we developed
an overall index assessing the risk from OA for Alaska that incorpo-
rates all of these data. In Section ‘Results’, we present the results
of this analysis as they relate to hazard, exposure, and social
ssment for Alaska’s fishery sector. Prog. Oceanogr. (2014), http://dx.doi.org/
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vulnerability, and their integration. In Section ‘Discussion’, we dis-
cuss the results in context with other studies, and in Section ‘Con-
clusions’, we present some brief conclusions and possible links
between this work and local policies.
Fig. 2. Schematic of risk framework used in this study, adapted from IPCC SREX.
Disaster risk is a function of the intersection of a hazard (here, OA), exposure of
human communities to the hazard/disaster, and vulnerability of the human system
to changes caused by these factors.
Materials and methods

Components of ocean acidification risk index

We have structured the assessment using the risk and vulnera-
bility framework developed by the IPCC SREX (Cardona et al., 2012)
for climate change, so that our findings can be evaluated in a com-
mon structure and language with other social–ecological risks
from climate change. In this framework, we consider the overall
‘‘disaster risk’’ related to OA. Disaster risk is shorthand for the like-
lihood that extreme physical events will intersect with vulnerable
social groups, resulting in negative effects that will require emer-
gency intervention (Field et al., 2012). Although OA may not repre-
sent the same class of climate disaster as, for example, severe
flooding, it could disrupt human livelihoods and nutrition over
annual to decadal timescales, as it already has in the Pacific North-
west of the U.S. (Washington State Blue Ribbon Panel on Ocean
Acidification, 2012). In that way, OA is more analogous to climate
change’s effects on agriculture, which could be both long- and
short-term and act through direct organism and indirect ecosys-
tem routes. The evaluation of the disaster risk related to OA using
this framework provides broad-based insights into possible ways
to offset its risk, because this approach weighs natural hazards
equally against socio-economic resources and liabilities.

The framing of risk and vulnerability we applied here differs
slightly from the few studies that previously evaluated risk of
losses from OA (i.e. Cooley and Doney, 2009; Brander et al.,
2012; Narita et al., 2012). Using Cardona et al.’s (2012) definition,
we assessed risk using three main components: hazard, exposure,
and vulnerability. Vulnerability is made up of two dimensions,
referred to as sensitivity and capacity. Within this framing, the
component of exposure is independent of vulnerability. This is a
slight deviation in terminology from definitions described in previ-
ous IPCC reports (2007 and 2001), which evaluated exposure as
one dimension of vulnerability. Lavell et al. (2012) provide a thor-
ough discussion of the IPCC’s change in definition and its stronger
focus on risk. In brief, by separating exposure out of vulnerability,
they maintain that vulnerability is a latent trait of a system (social,
ecological, or other), and thus can be described as independent of
the hazard. Here, vulnerability is constructed based on social sys-
tems’ sensitivity and adaptive capacity, concepts that are described
in Section ‘Vulnerability’ below.3

The total disaster risk is based on the intersection of the hazard,
the assets exposed to the hazard, and a system’s vulnerability to
the hazard (Fig. 2). Here, OA is the environmental hazard (navy
blue region in Fig. 2) and how it is projected to change over time.
Exposure refers to where organisms that could be harmed by OA
are located. For this exposure component of the analysis, we focus
only on living marine resources that are directly important to
human communities in Alaska. Our analysis of vulnerability of
the social system depends on two components: (1) Sensitivity,
here defined as human communities’ degree of dependence on
OA-susceptible resources, which is offset by the presence of
3 There are many ways that scholars and practitioners employ the terms
vulnerability and risk (differences discussed in, but not limited to, Cardona (2004),
Cardona et al. (2012), Cutter et al. (2008), and Füssel (2007)). We sought to avoid
adding to the confusion of the literature. For this reason, we remain consistent with
conceptual framing of the most recent IPCC reports because these represent a
consensus on the complicated topic among a large number of international experts
that specialize in the concepts’ theoretical derivations.

Please cite this article in press as: Mathis, J.T., et al. Ocean acidification risk asse
10.1016/j.pocean.2014.07.001
alternative resources; and (2) adaptive capacity, here encompass-
ing the human communities’ estimated ability to respond with
proactive adaptation in anticipation of an environmental chal-
lenge. Here, we assessed the overall risk from OA as a function of
all of these contributing factors.

Geographic analysis units

The fisheries and socio-economic datasets used here were orig-
inally divided into specific geographic regions that were not all
aligned. For example, fishing management areas are unique at
the species level while fishery harvest data relates to landing ports
and land-based census areas. To compensate for these geographic
differences between datasets, we chose to spatially fit each distinct
dataset into the standard federally assigned census areas and bor-
oughs for the state of Alaska (Alaska Department of Labor and
Workforce Development, 2011).

The marine coastal zones around Alaska can be broken down
into four broad regions and extend roughly from the shoreline to
the outer continental shelf, which is where nearly all commercial
and subsistence harvest is conducted. These regions are the Gulf
of Alaska (GOA), the East Bering Sea/Aleutian Islands (EBA), the
Chukchi Sea (CS), and the Beaufort Sea (BS). Each region is
impacted by unique biogeochemical processes, and we have bro-
ken them down here based on a number of factors including gen-
eral ocean circulation patterns, rates of production, distribution of
fisheries, and sea ice extent. The geographic extent of each region
varies considerably, with the EBA and CS covering large regions
due to their broad continental shelves, while the GOA and BS cover
much smaller areas.

Hazard

We quantified the hazard of OA using surface pH and the satu-
ration state of the two CaCO3 minerals aragonite (Xarag) and calcite
(Xcal). To illustrate the past, present, and projected chemical prop-
erties in Alaskan waters, we use output from the coupled climate-
ocean model NCAR CESM1-BGC (National Center for Atmospheric
Research Community Earth System Model with a biogeochemistry
model enabled; Lindsay et al., 2014; Long et al., 2013a). The
CESM1-BGC model is a descendant of the NCAR CCSM4 model, dif-
fering only in the inclusion of an ocean biogeochemical model
(Moore et al., 2004) and three-dimensional atmospheric CO2 trac-
ers, which are each interactively coupled to each other and to the
ssment for Alaska’s fishery sector. Prog. Oceanogr. (2014), http://dx.doi.org/
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land biogeochemistry model (Lindsay et al., 2014). These improve-
ments allow additional biogeochemical feedbacks to the physical
climate (Lindsay et al., 2014). Historical atmospheric CO2 emis-
sions were used to force the simulation over the industrial period
(Lindsay et al., 2014), while the future simulation followed the
atmospheric CO2 emissions from the IPCC RCP 8.5 (van Vuuren
et al., 2011) scenario. CESM-modeled seawater CO2 levels are
therefore influenced primarily by atmospheric CO2 levels, ocean
physics, and respiration and primary production in the ocean.
The simulated changes in surface pH, Xarag and Xcal from the past
(1880–1889) to near-present (2003–2012) and end of this century
(2090–2099) are calculated as decadal mean values for each region
(see Section ‘Geographic analysis units’) and time period.

For the hazard component of the risk framework, we ranked the
four ocean regions according to the forecasted level of decrease in
decadal mean Xarag between the near-present (2003–2012) and
the end of this century (2090–2099). We anticipate that ocean
regions with greater projected decreases in mean surface Xarag will
be at greater risk of the hazard represented by OA. Each of the mar-
ine geographic regions abutted multiple census areas on land, so
multiple census areas experienced the same hazard. Inland census
areas were assigned the mean change in surface Xarag for the four
ocean regions. Relative hazard was scored by ranking the ocean
regions from 1 (smallest projected DXarag) to 4 (greatest projected
DXarag).

Exposure

Exposure to the effects of OA is related to which marine
resources are important to human communities and susceptible
to OA. In a vulnerability and risk analysis, exposure typically is
guided by the question of ‘‘who or what will be exposed to the
given hazard or stressor?’’ In our application of the framework,
exposure refers to where organisms are located that could be
harmed by OA. However, absent of the specific locations of the
organisms, we represent their distribution with two metrics that
indicate the organisms’ relative importance to certain areas. Met-
rics of importance of organisms are based on two social values:
economic and nutritional. The side benefit of using social impor-
tance to represent the geographic location of organisms is that it
more accurately represents the aspect of the organisms we are
interested in for this risk assessment.4 Given that OA affects some
marine organisms more than others (and in different ways), we
accounted for this difference using the state of the science as it
applies to marine organisms in Alaska. To date, only a few of the
important fishery species in Alaska have been tested for a response
to OA (Hurst et al., 2012, 2013; Long et al., 2013a,b), and these phys-
iological sensitivity evaluations do not yet provide comprehensive
evaluations of the full range of potential OA impacts and their con-
sequences to population- or ecosystem-level dynamics. But it is
standard to assume that negative effects on individuals will result
in some degree of negative population-scale consequence (Kroeker
et al., 2013a,b). Furthermore, Alaskans’ direct and measurable use
of OA-susceptible species is primarily through fishing and fishery-
related activities, so marine biological data used in this study are
restricted to species with important commercial or subsistence
harvests.

To transform our knowledge of how Alaskan species are likely
to respond to OA (Table 1 and Section ‘Introduction’) with socio-
economic effects, we sought to quantify the value of individual
species to Alaskans. However, data reporting confidentiality rules
and the lack of research on individual Alaskan species required that
4 Other studies that focus on ecological risk of organisms to OA alternatively would
be less interested in social values and more interested in the organism’s role in
ecosystem function.
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we pool harvest data into increasingly coarse biological categories
as our analysis became more geographically detailed. For statewide
analyses, confidentiality-based data gaps were minor at the species
level, so we presented data by species or by major functional
groups as in Cooley and Doney (2009). This grouping allowed for
some consideration of the differential species-specific responses
exhibited by Alaskan species. For census area-scale assessments,
both commercial and subsistence harvest data were pooled into
three major groups: shellfish, salmon, and other finfish. The shell-
fish category included all species of crab, shrimp, clams, octopus,
squid, scallops, urchins, and sea cucumbers; the salmon category
included all species of salmon; and the ‘‘other finfish’’ category
included everything else. This grouping strategy reflected the find-
ing that mollusks from other regions experience net negative
effects from OA (Kroeker et al., 2013a,b), and that red king crabs
and Tanner crabs from the Alaska region also exhibit negative
responses from OA (Long et al., 2013a,b; see also Table 1). The neg-
ative responses of these taxa are due to direct effects, such as
changes on calcification, growth, survival, development, and abun-
dance (Kroeker et al., 2013a,b).

It is also expected that Alaskan species that prey on calcifying
species would experience indirect negative effects associated with
food web shifts or prey abundance decreases; this possibility has
been proposed for pink salmon (Oncorhynchus gorbuscha), which
prey on pteropods, a potentially vulnerable zooplankton group
(Aydin et al., 2005; Fabry et al., 2008; Bednarŝek et al., 2012).
Moreover, an ecosystem-based model for the California Current
projected substantial declines in harvests of species that prey on
calcifiers in scenarios including OA (Kaplan et al., 2010). Because
of salmon’s distinct life history and the importance of their har-
vests to Alaska, we included them as a separate biological group
at risk from the indirect effects of OA. We assumed other finfish
harvests were unlikely to be significantly affected by OA; this deci-
sion was based on the lack of information demonstrating direct
negative responses to OA or strong trophic linkages of specific spe-
cies or finfish groups to vulnerable prey such as pteropods. Math-
ematically, this distinction between directly affected, indirectly
affected, and unaffected groups was made by weighting the shell-
fish group by 2, the salmon group by 1, and the other finfish group
by 0 whenever metrics were calculated relating to the proportional
contribution of each to overall fishery activities.

The first aspect of marine organisms we quantified represented
their economic value to Alaskans. The commercial economic value
of marine organisms was determined from species-specific com-
mercial harvest quantity and price data provided by Alaska Depart-
ment of Fish and Game (ADF&G; C. Tide, personal communication),
which includes information about both commercial harvesting and
processing. Commercial fishing harvest quantity data were
reported by weight in pounds for the total annual harvest for
2011, the most recent year available. The ex-vessel value of these
harvests, or the value of the harvests received by fishermen and
before processing, is from the Commercial Operator’s Annual
Report (COAR) and available from Cathy Tide (personal communi-
cation). Harvest quantity per capita and all per capita calculations
described henceforth were calculated with population data from
the 2011 U.S. Census Survey. Confidentiality agreements between
records of fishermen, vessels, and/or processors and the reporting
agency (ADF&G) prevented disclosure of data where three or fewer
companies were involved, and this created a few gaps in data
obtained for species and/or census areas. The number of people
involved in commercial fishing was determined primarily through
licensing and permit data (ADF&G Administrative Services Divi-
sion) and state employment estimates. All 2011 permit holders
claiming Alaskan residency and having an Alaskan address were
included in the number of people involved in commercial fishing.
The number of crew associated with each of these permits was also
ssment for Alaska’s fishery sector. Prog. Oceanogr. (2014), http://dx.doi.org/
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included, based on ADF&G estimates using 2010 data. The number
of people involved in processing includes both residents and non-
residents, but all processing activities take place within the state
(Alaska Department of Labor and Workforce Development, 2011).

Marine resources supplying food to Alaskans was the second
aspect of marine organisms’ exposure to OA that we investigated.
Alaska residents’ nutritional dependence on marine resources
was gauged from subsistence fishery harvest quantity data from
the ADF&G (J. Fall, personal communication). These data are
reported as the total salmon, total shellfish, and all ‘‘other fish’’
in usable pounds per person, based on aggregated household sur-
vey data, post-season survey records, and permit data taken
throughout the state, grouped into federally designated census
areas for this study (J. Fall, personal communication). Subsistence
fishing activities considered here included all personal, noncom-
mercial fishing activities performed in state waters.

Human exposure to OA through fishery resources were semi-
quantitatively assessed using a metric (E) that sums the measures
of both commercial economic and nutritional importance. For
notational clarity, when describing our index we used the term
‘‘economic’’ and the subscript E to refer to commercial harvest
and processing activity. We used the term ‘‘nutritional’’ and the
subscript N to refer to subsistence activity.

For each census area, we quantified exposure due to economic
value, EE, as:

EE ¼ 2CR;Sh þ CR;Sl;

where CR,Sh is the percent of total commercial revenue from shell-
fish, and CR,Sl is the percent of total commercial revenue from sal-
mon. To overcome data gaps caused by reporting confidentiality
rules, we first calculated the statewide average values for harvests
of each species per company (pounds) and revenues from each spe-
cies per company (dollars) for the ‘‘shellfish’’ and ‘‘salmon’’ catego-
ries. Then we estimated the additional harvest weight and revenue
values that had not been reported by multiplying the number of
companies in each census area whose data were confidential by
these statewide average values, and adding the estimated addi-
tional harvest and revenue estimates to the reported totals.

Exposure in terms of nutritional importance of marine organ-
isms, EN, was calculated as:

EN ¼ 2SWT;Sh þ SWT;Sl

where SWT,Sh is the percent of total subsistence harvest weight from
shellfish; and SWT,Sl is the percent of total subsistence harvest
weight from salmon. The resulting census area values for both EE

and EN were divided into quartiles and scored from 1 to 4, with low-
est exposure values receiving a score of 1 and highest a 4. Scored
nutritional and economic exposure were then evenly weighted
and combined to determine exposure:

E ¼ 0:5E0E þ 0:5E0N;

where the prime symbols indicate the quartile-classified quantities
scored from 1 to 4 as described above.

Vulnerability

The severity of impacts from OA (and other environmental haz-
ards) depends on not only the level of exposure of the system to
the hazard, but also the degree of vulnerability of the system to
the hazard. Vulnerability is the degree to which a system (social,
natural, or otherwise intertwined) is susceptible to harm from a
given hazard (Cardona et al., 2012). We use vulnerability to
describe the social system because we are interested in the risk
that OA presents to humans. There is also a growing literature that
focuses on organisms, in which the term vulnerability is used to
describe biological or ecological susceptibility of species or
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ecosystems (or their services) to a given hazard (e.g. see Foden
et al., 2013; Williams et al., 2008). The concept of vulnerability is
defined and evaluated in several different ways across (and even
within) disciplines (Füssel, 2007). Here, we follow the terminology
and conceptualization of vulnerability within risk as presented in
Cardona et al. (2012). This largely stems from the disaster risk
management community and has been united with the climate
adaptation community in the Oppenheimer et al. (2014) and
Cardona et al. (2012) as the way the IPCC now uses the terms. In
this conceptualization, vulnerability is assessed independent from
exposure to the hazard and rather seeks to understand those pop-
ulation characteristics that inherently increase Alaskans’ propen-
sity to suffer from OA. To gauge this social vulnerability, we
evaluate the social system’s sensitivity and adaptive capacity to
OA. Here, the terms of sensitivity were viewed as the degree of
human reliance on OA-susceptible organisms. In terms of adaptive
capacity, this encompasses characteristics of the current socio-eco-
nomic system that afford flexibility in the face of changing ecosys-
tem services, which includes the ability of human systems to
prepare for, respond to, or adapt to changes from OA.

Sensitivity
Sensitivity (VS) is measured here using both commercial harvest

and subsistence harvest data. In contrast to exposure, which pri-
marily documents the extent that OA-susceptible species are pres-
ent and valued in Alaska, sensitivity as quantified also includes
scaling factors related to people’s varying degree of reliance on
the species. This scaling allows an assessment of the relative
importance of this economic or nutritional dependence to individ-
uals and the region.

Economic sensitivity, VS,E, is evaluated for each census area. VS,-
E,Q is the estimated amount of revenue per capita from harvesting
and processing OA-susceptible species, calculated as the estimated
gross earnings of harvesters (data: Alaska CFEC (Commercial
Fisheries Entry Commission), 2011) plus the wages from process-
ing, divided by the estimated harvester and processor workforce.
Estimated earnings of both resident and nonresident processor
workers are pooled and treated together, assuming that nonresi-
dent processors are primarily spending their earnings within the
state. The processor workers’ earnings used here represent an
upper bound for spending/local economic contributions, as the
earnings are not traceable by the worker’s residence. Due to this
limitation, our estimates could place processor-worker spending
up to 54% higher than it really is. This estimate is based on the ratio
of non-resident workers to resident workers.

VS,E,C is estimated by multiplying the percent of the population
involved in harvest and processing (calculated from CFEC and U.S.
Census data) by the percent of commercial harvests, by weight,
devoted to shellfish and salmon (calculated from ADF&G-based
estimates for each census area developed using the data gap-clos-
ing procedure described in Section ‘Exposure’). Once both VS,E,Q and
VS,E,C are calculated, they are divided into quartiles, which equate
to scores as described above. The index value of VS,E is then calcu-
lated as:

VS;E ¼ 0:5V 0S;E;Q þ 0:5V 0S;E;C ;

where primes indicate the quartile-classified and scored quantities.
Resulting VS,E values for each census area are then divided into
quartiles and scored.

To assess sensitivity due to nutritional dependence (VS,N), we
examined the proportion of per capita subsistence harvest weight
devoted to calcifiers (VS,N,C) and salmon, and the quantity of subsis-
tence harvests per capita (VS,N,Q). VS,N,C is calculated as:

VS;N;C ¼ 2SSh;WP þ SSl;WP;
ssment for Alaska’s fishery sector. Prog. Oceanogr. (2014), http://dx.doi.org/
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where SSh,WP and SSl,WP are the percent of per capita subsistence har-
vests by weight from shellfish and salmon, respectively. Subsistence
harvest weight and composition are from ADF&G (J. Fall, personal
communication). VS,N,Q is calculated as the total quantity of subsis-
tence harvests per capita (pounds/person). Once VS,N,C and VS,N,Q are
each divided into quartiles and scored, VS,N is calculated as:

VS;N ¼ 0:5V 0S;N;Q þ 0:5V 0S;N;C :

VS,N values for each census area are then divided into quartiles and
scored.
Adaptive capacity
The capacity to adapt, prepare for, or respond to the impacts of

OA is the other component used to estimate vulnerability.5 To
examine this adaptive capacity, we created a metric that broadly
assesses the resources Alaskans have even if current community sta-
bility is altered through changes in income or nutrition (Allison et al.,
2009; Cooley et al., 2012). Very little research has investigated the
multiple dimensions of adaptive capacity as related directly to OA
(other than Cooley et al., 2012); however, a lot of scholarly work
looks at the capacity of groups of people to deal with the damage
from climate change, including a focus on fisheries (e.g. Allison
et al., 2009; Berkes and Jolly, 2001; Cinner et al., 2009; Cinner
et al., 2012; Coulthard, 2008; Hughes et al., 2012; Jepson and
Colburn, 2013; Marshall et al., 2013). We gathered indicators to rep-
resent four main areas of capacity: economic stability, educational
attainment, job diversity, and food accessibility. Economic stability
is measured via four variables: personal income per capita, house-
hold dependence on Permanent Fund Dividend (PFD) payments, pov-
erty, and unemployment. (The Alaska PFD is a financial dividend
paid to all Alaska residents who have lived in the state a full calendar
year.)
Economic stability. Economic stability-related data were from the
Alaska Department of Labor and Workforce Development
(2012a,b) and U.S. Census Bureau (2011). Per capita personal
income (for the past 12 months in 2010 inflation-adjusted dollars)
was taken from 2006–2010 U.S. Census Bureau data (U.S. Census
Bureau, 2011). This is a similar measure to GDP per capita; how-
ever, it includes earnings classified as self-employment, which
make up the majority of the fishing industry’s income. Household
dependence on the PFD was calculated by multiplying the average
household size for each census area by the 2010 PFD allotment
($1281 per capita; Alaska Department of Revenue, Permanent
Fund Dividend Division, 2011) and dividing by the median house-
hold income, from the 2006–2010 U.S. Census Bureau data (U.S.
Census Bureau, 2011). Poverty is represented as the percent of peo-
ple of all ages in poverty from 2006–2010 (U.S. Census Bureau,
2011). Unemployment rates are from the Alaska Department of
Labor and Workforce Development (2012a). These data understate
unemployment somewhat, as they do not account for unemployed
people who have stopped actively searching for work (Alaska
Department of Labor and Workforce Development, 2012a).
Education. Education is commonly used to represent people’s abil-
ity to access and act on new information as one dimension of adap-
tive capacity. The indicator used for educational attainment in our
study is the percent of people 25 years old and over that have com-
pleted high school or beyond, 2006–2010 (U.S. Census Bureau,
2011).
5 We do not differentiate between coping and adaptive capacities here (see
Cardona et al., 2012), but acknowledge that this may be the topic of future social
science research that seeks to contribute to the OA field.
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Job diversity. For people who rely on OA-susceptible organisms,
though possibly unappealing, one adaptation option may be to
seek alternative employment outside of fisheries. To represent
the alternative employment options, we created a job diversity
measure. To calculate this type of diversity, we used the total num-
ber of current industry types per census area from the U.S. Depart-
ment of Labor (U.S. Department of Labor, Bureau of Statistics,
2012). This sums the number of employment divisions, or industry
units, existing in each census area (i.e. transportation sector, food
sector, health sector, etc.). Using these values, we are able to quan-
tify the number of different job, or industry types that are reported
within the specific census area with earnings. We assume these
values are representative of job diversity. These data are reported
annually and can be viewed as a quantitative measure of poten-
tially available employment opportunities unrelated to fishing,
because it counts all other trades but excludes self-employment,
which is the usual classification for fishing activities.

Food accessibility. In cases where food is not abundantly available
to a community, we consider this inaccessibility to reduce the
community’s capacity to cope with loss a food source (caused by
OA). Food accessibility is estimated by the average annual food cost
in a community, assuming that high food prices reflect long supply
chains and inaccessible supplies, and they also make food less eco-
nomically accessible to people in the community. Weekly food
costs by community relative to Anchorage’s food costs were deter-
mined as part of a long-term food cost survey (B. Luik, personal
communication). Monthly averages for each census area were cal-
culated from the survey data and multiplied by 12 months to yield
annual food cost estimates. Survey data for March, June, Septem-
ber, and December were averaged for an annual value. Some com-
munities were not surveyed in every period; in those cases,
averages were taken from existing data points. The communities
in the survey were matched to their respective census area (CA)/
borough. Census areas that were not surveyed use data from the
closest surveyed area. Anchorage prices are used for comparison,
as the area is a large market, yet one whose prices behave differ-
ently from those in the contiguous U.S.

We combine these seven variables into an index of ‘‘adaptive
capacity’’ (VC) using the weighting and aggregating methods from
Halpern et al. (2012), the Human Development Index (United
Nations Development Programme, 2011), and the World Risk
Report (Alliance Development Works et al., 2012). Datasets for
each variable were scaled from their original values to a normal-
ized range between 0 and 1.0. Finally, VC is determined as a
weighted sum of the scores for each of the index variables (I1, I2,
... , I7) and their respective weights (a1, a2, . . . , a7).

V ¼
X7

n¼1

Inan

where I1 = size of the economy, measured by per capita personal
income; I2 = poverty; I3 = unemployment rate; I4 = the PFD contri-
bution per household; I5 = educational attainment; I6 = industry
diversity; and I7 = food accessibility. a1, a5, a6, a7 are 100, and a2,
a3, a4 are 33. VC values were divided into quartiles and scored so
that the lowest values, indicating low adaptive capacity, received
a score of 4 and the highest values and adaptive capacity receive
a score of 1.

Risk index

We developed an overall index to combine the different metrics
developed for hazard, exposure, and vulnerability, and to allow rel-
ative evaluation of risk factors for each Alaskan census area. Once
each metric was itself divided into quartiles and scored so that low
ssment for Alaska’s fishery sector. Prog. Oceanogr. (2014), http://dx.doi.org/
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exposure, hazard, or vulnerability received low scores, etc. (indi-
cated symbolically by primes), the final index I was calculated
assuming even weighting of each component (see Fig. 3):

I ¼ 0:33H0 þ 0:33 0:5E0E þ 0:5E0N
� �

þ 0:33 0:5V 0C þ 0:5 0:5 0:5V 0S;E;C þ 0:5V 0S;E;Q
� ���

þ 0:5 0:5V 0S;N;C þ 0:5V 0S;N;Q
� ���

I ¼ 0:33H0 þ 0:33 0:5E0E þ 0:5E0N
� �

þ 0:33 0:5V 0C þ 0:5 0:5 0:5V 0S;E;C þ 0:5V 0S;E;Q
� ���

þ 0:5 0:5V 0S;N;C þ 0:5V 0S;N;Q
� ���

In the above equation, the first term relates to the hazard, the sec-
ond to exposure, and the third to vulnerability. Last, we divided I
into three levels, corresponding to lowest risk, moderate risk, and
highest risk, respectively.
Results

Hazard

Model simulations (Fig. 4) indicate a rapid progression of OA in
Alaskan waters, with a southward shift of habitats suitable for OA-
sensitive organisms. Modeled preindustrial pH was highest in the
BS region (pHpreind 8.17, Fig. 4a); however, model results also indi-
cate that this region experienced the largest preindustrial to pres-
ent day change of pH (DpH = 0.14), which is above the global
average change of surface pH (e.g. Feely et al., 2004) and consistent
with recent observations in the region (e.g. Cross et al., 2013). Pres-
ent-day simulations show mean surface pH values of 8.03–8.05 in
all four regions (Fig. 4b), with the largest future surface pH changes
projected for the BS (DpH = 0.37), where mean surface pH is fore-
casted to decrease to 7.66 by the end of the century (Fig. 4c). There
were large regional differences in preindustrial Xarag, which was
lowest in the BS (�1.4) and highest in the GOA (2.07). Since the
preindustrial era, surface Xarag in the BS decreased by 0.37 units,
pushing the system close to year-round aragonite undersaturation.
The fastest future change in Xarag is projected for the GOA
(DXarag = 0.79), which will lead to a shoaling of the aragonite sat-
uration horizon by 179 m. By 2100, all waters around Alaska are
projected to be perennially undersaturated with regard to
aragonite, and waters in the BS and CS are even projected to be
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undersaturated with regard to calcite during parts of the year. Only
habitats within EBA and GOA will remain supersaturated with
respect to calcite during this century, with Xcal = 1.31 and
Xcal = 1.52, respectively. Table 2 summarizes the changes between
past, present, and future.

Exposure

Because risk to the human populations in Alaska from OA oper-
ates through potential changes in populations of specific marine
species, we considered exposure to only include OA-susceptible
species that are also important to humans. Although Alaska’s larg-
est fisheries, both by revenue and by weight, rely on finfish such as
pollock, salmon, and halibut, a substantial portion of both commer-
cial and subsistence fisheries rely on mollusks and crustaceans. The
ADF&G has published summer harvest distribution maps for some
crab and clam species, which we have merged (Fig. 5), illustrating
the intersection of the oceanographic hazard of OA, the presence of
OA-susceptible species, and human uses of these species. Most
commercially harvested crab species are primarily taken from Bris-
tol Bay and the Bering Sea, while commercially and nutritionally
important Tanner crabs are found in the GOA near the coast. In
contrast, clams popular with subsistence harvesters are located
very near shore, along the Aleutians and all along Alaska’s southern
coast bordering the GOA. In other basins, there is evidence that
warming has resulted in shifts of finfish species (Cheung et al.,
2013), but the effects of OA on biogeography are still not well
known.

To examine exposure of OA on Alaskan harvests in more detail,
we divided the list of Alaskan commercially harvested species for
2011 reported by ADF&G into major taxonomic groupings as in
Cooley and Doney (2009): clams, scallops, urchins, shrimp, crabs,
calcifiers’ predators, top predators, those unaffected by OA, and
those whose response to OA is unknown (Fig. 6). Calcifiers’ preda-
tors dominate the array of species caught. However, when com-
mercial harvest data are viewed by weight and revenue, a more
complex picture emerges (Fig. 7). Although calcifiers’ predators
also lead the commercial harvest by quantity and revenue, the
commercial importance of crabs and top predators also emerges.
Table 3 provides insight into the completeness of these data; for
most taxonomic categories, we have data from the majority of
companies purchasing these species and the majority of species
being harvested. Only data for scallops (1 species, 2 companies)
and echinoderms (1 species, 1 company) remained confidential;
we assume the small number of species and companies involved
ssment for Alaska’s fishery sector. Prog. Oceanogr. (2014), http://dx.doi.org/
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Table 2
Modeled average changes (D) in Xarag, Xcalc, pH, temperature, and salinity from the past (1880–1889) to the present (2003–2012), and the present to the future (2095).

Parameter Change in parameter (D) Chukchi Sea Beaufort Sea Bering Sea Gulf of Alaska

Xarag Present–past �0.30 �0.37 �0.26 �0.31
Future–present �0.59 �0.52 �0.68 �0.79

Xcalc Present–past �0.48 �0.59 �0.42 �0.50
Future–present �0.94 �0.84 �1.09 �1.26

pH Present–past �0.11 �0.14 �0.10 �0.10
Future–present �0.35 �0.37 �0.35 �0.34

Temperature Present–past 0.52 0.41 1.28 1.25
Future–present 2.70 2.48 4.15 3.40

Salinity Present–past �0.48 �0.52 �0.12 �0.07
Future–present �0.94 �0.05 �0.51 �0.40
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suggests that these harvests are relatively small compared to
others.

Examining commercial harvest characteristics by CA shows
some important regional patterns (Figs. 8 and 9). Revenues from
shellfish are most important in southeast and southwest Alaska
(Haines through Wrangell and Aleutians East through Lake and
Peninsula, respectively). Revenues from salmon are important
everywhere in the state, but especially in Alaska’s interior and wes-
tern CAs. When we filled gaps associated with unreported harvests
or revenues using the state average per company multiplied by the
number of companies not reporting, we found that we overesti-
mated both shellfish harvest weight and revenue by 4% and under-
estimated salmon harvest weight and revenue by 1–2%, compared
to ADF&G-reported statewide total harvest weights and revenues.
Please cite this article in press as: Mathis, J.T., et al. Ocean acidification risk asse
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We conclude that the estimates we applied to fill confidentiality-
based data gaps do not materially change the results of the
investigation.

Finally, exposure to OA through nutritional importance was
explored using subsistence data. Salmon constitute 20–85% of sub-
sistence diets throughout Alaska (Fig. 10) and is an especially large
component of subsistence diets in the interior and western CAs.
Shellfish are a large component of subsistence diets in southeast
Alaska and are also important in subsistence diets in south central
and southwest areas. Meanwhile, other fish contribute 20–70% to
subsistence diets statewide, with a mode around 35%. Assuming
proportions represent some measure of preference, salmon and
shellfish are the preferred subsistence taxa, while also being likely
to suffer from OA.
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Fig. 6. The list of commercially harvested species in Alaska is dominated by finfish
that prey on calcifiers during some or all of their lives or part of the seasonal cycle.
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Vulnerability

Sensitivity, or the degree of economic and nutritional reliance of
the human community on OA-susceptible species, makes up one
half of vulnerability, as calculated in this study. Sensitivity metrics
concerning nutritional dependence were based on per capita rates
Please cite this article in press as: Mathis, J.T., et al. Ocean acidification risk asse
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of nutritional dependence on OA-susceptible groups (here, shell-
fish and salmon). One metric was based on the proportion of OA-
susceptible species consumed in a CA, and the other was based
on the overall quantity of subsistence harvests per capita.
Together, the two metrics provide insight into overall nutritional
dependence on OA-susceptible groups. In southern and western
Alaska, there were both high proportions of shellfish consumed
per capita and large quantities of subsistence harvests per capita
(especially southeast Alaska; Table 4). Northern and interior areas
tended to have either a larger array of groups being harvested or a
larger per capita consumption of subsistence harvests, but not both
in the same community.

Sensitivity metrics concerning economic dependence were
based on data concerning the per capita earnings of the population
involved in commercial harvesting and processing and an estimate
of the proportion of the population involved in harvest and pro-
cessing of OA-susceptible species. Relative to other Alaskan
regions, southern Alaska has the highest economic dependence
on these species via commercial harvesting and processing
(Table 4).

The other half of our vulnerability score is driven by the human
community’s adaptive capacity. In this study, the adaptive capacity
metric was based on datasets providing insight into economic sta-
bility, educational attainment, job diversity, and food accessibility.
Indicators measuring relatively higher in any of these four compo-
nents in a given CA would potentially ensure that the residents had
other options for employment and nutrition if shellfish or salmon
harvests declined due to OA. In more rural areas, such as some
parts of interior Alaska, northwest Alaska, and southwest Alaska,
adaptive capacity was comparatively low (Table 4).
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Fig. 7. Commercial harvest ex-vessel harvests (filled bars) in pounds and earnings (open bars) in U.S. dollars, by category, for 2011 based on ADF&G data. Scallops and
echinoderms were unreported owing to confidentiality rules.

Table 3
For each major biological category, the proportion of species with reported data and
the proportion of companies reporting data for a species in that category.

Category Species reported (%) Companies-species
combination reporting (%)

Clams 50 85
Scallops 0 0
Urchins 0 0
Shrimp 50 93
Crabs 100 100
Calcifiers’ predators 73 96
Top predators 70 98
Unaffected by OA 33 50
OA response unknown 100 100
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Total risk

The total risk index brought together the risks from the hazard
of OA, the extent fisheries’ assets are exposed to it, and vulnerabil-
ity of the human population. Table 4 shows the results for each CA,
using the method described above. In general, southern Alaska is at
greater risk from OA due to both dependence on OA-susceptible
species for nutrition and income, and the rapidly forecasted change
in chemical conditions (Fig. 4). Additional risk factors include being
in a rural area with low job diversity, employment, and educational
attainment, as well as high food costs.
Discussion

Hazard

Modeled present and future carbonate chemistry in the seas
around Alaska represent average values modulated by global pro-
cesses like atmospheric CO2 uptake (Fig. 4), but the model’s rela-
tively coarse scale cannot simulate some of the features that
greatly affect OA in Alaskan waters, such as sea ice melt, glacial dis-
charge, river and groundwater runoff, and localized phytoplankton
blooms or physical features. Indeed, local conditions observed are
substantially affected in some locations by processes operating
Please cite this article in press as: Mathis, J.T., et al. Ocean acidification risk asse
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over short temporal and spatial scales that alter the carbonate
system, as reviewed in Section ‘Ocean acidification near Alaska’.
Biological responses

How, then, will projected changes to ocean carbon chemistry
affect marine resources? Even though the western Arctic (CS and
BS) may have the most rapid decline in aragonite saturation states,
this area has limited direct connections to fisheries resources.
However, the region is an important summer feeding ground for
robust whale, walrus, and seal populations that are important to
subsistence hunters along the coast as well as traditional cultural
activities. On the other hand, the Bering Sea is predicted to pro-
gress more slowly toward increased OA, but it supports extremely
valuable commercial and subsistence fisheries. Meanwhile, the loss
of suitable habitat in a region may have unknown and cascading
consequences for certain species in the future. As temperatures
warm in the Bering Sea, subarctic species will likely shift north-
ward (Cheung et al., 2013). However, water chemistry may have
changed so that cooler habitats will also be characterized by mark-
edly lower pH and X. In the most extreme scenario, these multiple
stressors may combine to shrink or eliminate the environment
appropriate for some species.

OA has been shown to have a substantial negative effect on red
king and Tanner crab, particularly during the larval stages (Long
et al., 2013a,b). Such declines in larval survival would likely affect
overall population productivity through reduced recruitment, ulti-
mately reducing the number of crabs available for commercial har-
vest. However, these early life stages occur from January to June
and do not currently coincide with undersaturation events. More
research on the effects of OA on other life history stages and their
physiological responses is necessary to fully understand the effects
it will have on crab populations throughout the year as well as
other benthic calcifying organisms.

The impacts of OA on pelagic calcifying and non-calcifying
organisms in the region are less clear. While there may not be a
direct effect on certain pelagic finfish, such as walleye pollock,
reflected in the limited impacts on growth and mortality, it is
unknown how OA will affect the food supply of these fish or their
ssment for Alaska’s fishery sector. Prog. Oceanogr. (2014), http://dx.doi.org/
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Fig. 8. Estimated proportions of 2011 commercial harvests associated with shellfish, salmon, and other finfish, calculated by weight and with confidentiality gaps estimated
as described in the text. Gaps on the x-axis indicate no data for a given area.

Fig. 9. Estimated proportions of 2011 commercial harvest revenues associated with shellfish, salmon, and other species, and with confidentiality gaps estimated as described
in the text. Gaps on the x-axis indicate no data for a given area.
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behavior. Walleye pollock also consume pteropods, but rely more
heavily on copepods during early life stages before shifting to eup-
hausiids as their major prey source (Brodeur et al., 2002; Dwyer
et al., 1987; Moss et al., 2009). The impacts of OA on these lower
trophic level organisms have yet to be resolved (e.g. Fabry et al.,
2008). Because of these uncertainties and the varying degrees of
organismal responses, there will likely be winners and losers as
OA continues to worsen in the Bering Sea.

In addition to the potential impacts from OA-induced changes
in the food web, Alaskan finfish species may also experience direct
impacts from OA, as observed in some non-Alaskan species. For
example, growth and survival were reduced at high CO2 levels in
newly hatched inland silversides (Menidia berylinna; Baumann
et al., 2012); high CO2 levels appeared to induce a range of mor-
phological abnormalities in larval Atlantic cod without altering
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overall growth rate (Frommel et al., 2012); altered otolith growth
(calcium carbonate ear bones; Checkley et al., 2009; Hurst et al.,
2012; Munday et al., 2011) occurred in acidified conditions; and
olfactory and auditory perception decreased (Dixson et al., 2010;
Simpson et al., 2011). The mechanisms behind these processes or
their overall effects are still not well understood, and it is possible
that some Alaskan finfish species could experience these as well.

Whether indirect impacts due to trophic or habitat changes will
affect Alaskan finfish is still also an open question. Copepods and
krill are key links in polar food chains, and some evidence suggests
that they might respond negatively to OA through changes in feed-
ing, respiration, and excretion (e.g. Saba et al., 2012), while other
studies identify mixed responses that implicate species adaptation
or multigenerational acclimation (Fitzer et al., 2012). The lack of
convergence of OA responses in copepods and krill prevent us from
ssment for Alaska’s fishery sector. Prog. Oceanogr. (2014), http://dx.doi.org/

http://dx.doi.org/10.1016/j.pocean.2014.07.001
http://dx.doi.org/10.1016/j.pocean.2014.07.001


Fig. 10. Subsistence catch proportions by census area based on ADF&G data. Gaps on the x-axis indicate no data for a given area.
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inferring any likely consequences on finfish that prey on these
groups. Because of this, we treated salmon as an indirectly affected
species, because evidence suggests that pteropods make up a sig-
nificant and variable fraction of juvenile pink salmon diets
(Armstrong et al., 2005; Aydin et al., 2005; Karpenko et al., 2007;
Sturdevant et al., 2012). The projected negative effects on ptero-
pods might represent a bottleneck in the production of this impor-
tant species group. Unfortunately, while other harvested fishes are
also known to consume pteropods (e.g. Moss et al., 2009;
Sturdevant et al., 2012), there are insufficient data available to
evaluate the general importance of this prey species to the marine
fishes group as a whole. Similarly, while cold-water corals provide
habitat for 42 of the 94 commercially harvested species in Alaska
(J. Guinotte, personal communication), whether use of this habitat
is obligatory or opportunistic is unknown, as is the degree to which
changes in coral cover due to OA will translate into finfish popula-
tions. Additional research is necessary to evaluate the potential
impact of OA to other marine species through these trophic and
habitat pathways.

Of Alaska’s many marine resource species, shellfishes appear to
be the most directly influenced by OA (Long et al., 2013a,b).
Declines in larval survival would likely affect overall population
productivity through reduced recruitment, ultimately reducing
the number of crabs available for commercial harvest. While older
life stages are currently being exposed to these conditions in dee-
per waters and during seasonal events, the timing of reproduction
in these species currently protects vulnerable larval stages from
the detrimental effects of these seasonal pH minima. But the shoal-
ing of the carbonate saturation depths and year-round persistence
of undersaturated conditions will mean that crab larvae will be
increasingly exposed to these conditions as OA progresses. More
research on the effects of OA on other life history stages and their
physiological responses is necessary to fully understand the effects
it will have throughout the year on crab populations, as well as
other benthic calcifying organisms.

The impacts that OA could have on Alaskan resource species
through its effects on lower trophic level, pelagic calcifying and
non-calcifying organisms could be more significant than the direct
effects on some of those resource species. In this study, we chose to
treat salmon as an indirectly affected species to explore the possi-
bility of effects on Alaskan human communities if salmon is
Please cite this article in press as: Mathis, J.T., et al. Ocean acidification risk asse
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affected by this often-hypothesized route, rather than to make a
definitive statement about OA’s effects on salmon.
Human value of and dependence on OA-susceptible species

In Alaska, the principal connection between OA and the human
community is via fisheries. Commercial fisheries take 97% of the
wild resource harvest, while subsistence fishing produces about
2% of the total harvest of wild resource in Alaska, and sport fisher-
ies take about 1% (Fall, 2012). Although the quantity of subsistence
harvests are smaller than commercial harvests, subsistence fishing
is very important to about 20% of Alaska’s population, primarily
Alaska Natives living in rural areas. On average, subsistence fisher-
ies harvest provides about 230 lb of food per person annually in
rural Alaska. In CAs where the average annual food cost is about
twice that of Anchorage, such as Bethel, Bristol Bay, the Northwest
Arctic Borough, and the Wade-Hampton CA, the nutritional (and,
likely, indirect economic) benefits provided by subsistence har-
vests of all types of Alaskan species are immediate and critical.

The different weights applied to components of the adaptive
capacity used in this study, while conservative, could be suspected
to drive some of the trends observed. To judge how much the
weighting affected the outcomes, we tested the effect of weighting
the personal income variables in the adaptive capacity measure
separately vs. weighting all seven components of adaptive capacity
evenly, and we found that the effect of the weighting we applied
was to slightly depress the adaptive capacity score (R2 = 0.97).
We also examined the effects of weighting shellfish-related num-
bers twice as much as salmon-related numbers. If the two taxa
were weighted equally, exposure scores (EH,E and EN) and vulnera-
bility from nutritional dependence related to composition (VS,N,C)
were the only components of the final index that changed. The
effects of this weighting assumption also ended up being a bit lar-
ger than the adaptive capacity assumptions, but overall, analysis
results remained constant (Table 4). In that scenario, southern
Alaska is still most strongly affected but the differences between
census areas are more difficult to discern because there are more
ties in the final index score. In the situation where shellfish and sal-
mon are affected equally by OA, western Alaska is also more
strongly at risk.
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Table 4
Final scores for each census area and total ocean acidification risk index. Scores for each component of the final index (columns 3–10) are determined as described in the text. Low numbers correlate to lower risk for columns 3–11. The
rank of final index indicates which region has the highest risk (#1) and which has the lowest (#29). When shellfish and salmon use are weighted equally or when the lowest future saturation state is assumed to represent the hazard (see
text), the borough at highest risk changes, yet southern and western Alaska remain the regions with highest overall risk. When salmon and other finfish are weighted equally (see text), southern Alaska remains the region with highest
risk.

Region Census Area/Borough EH,E EN VS,N,C VS,N,Q VS,E,C VS,E,Q VC H Final index
value

Rank of final
index

Rank when shellfish/salmon
equally weighted

Rank when salmon/finfish
equally weighted

Rank when lowest future Xar

indicates most risk

North North Slope Borough 1 1 1 2 2 3 4 1 1.65 29 29 27 29

Interior Denali Borough 1 3 3 1 2 1 1 2 1.82 28 27 28 28
Fairbanks North Star
Borough

4 3 2 1 2 3 1 2 2.35 22 22 28 22

Southeast Fairbanks
Census Area

1 2 2 1 2 4 2 2 1.9 27 28 26 27

Yukon Koyukuk Census
Area

1 3 3 4 2 2 4 2 2.43 21 16 25 21

Northwest Nome Census A Area 2 2 2 3 2 2 3 3 2.52 20 15 18 20
Northwest Arctic
Borough

1 1 1 4 2 1 4 3 2.31 24 24 23 24

Wade Hampton Census
Area

2 2 2 4 3 1 4 3 2.72 16 7 22 16

South
Central

Anchorage,
Municipality of

3 2 2 1 2 4 1 4 2.68 17 14 13 17

Kenai Peninsula
Borough

1 1 1 2 3 4 1 4 2.23 26 16 15 26

Kodiak Island Borough 2 1 1 2 3 4 3 4 2.76 14 19 11 14
Matanuska-Susitna
Borough

1 2 2 1 2 4 1 4 2.35 22 16 23 22

Valdez-Cordova Census
Area

3 3 3 2 4 3 2 4 3.09 10 2 18 10

Yakutat City and
Borough

2 4 4 4 3 2 2 4 3.18 7 11 7 7

Southeast Haines Borough 3 1 1 3 4 2 2 4 2.68 17 19 7 17
Hoonah-Angoon Census
Area

1 3 3 3 2 4 3 4 3.01 11 11 7 11

Juneau, City and
Borough of

4 1 1 1 2 3 1 4 2.81 13 22 12 13

Ketchikan Gateway
Borough

2 1 1 1 3 2 1 4 2.31 24 22 17 24

Petersburg Census Area 4 4 4 3 4 1 2 4 3.47 5 8 6 5
Prince of Wales-Hyder
Census Area

3 4 4 3 3 3 3 4 3.51 3 13 3 3

Sitka, City and Borough
of

4 3 3 3 3 3 2 4 3.3 6 9 5 6

Skagway, Municipality
of

1 3 3 2 2 4 1 4 2.56 19 25 13 19

Wrangell City and
Borough

4 4 4 2 4 4 2 4 3.59 2 3 2 2

Southwest Aleutians East Borough 2 4 4 2 4 2 4 4 3.51 3 3 3 3
Aleutians West Census
Area

3 1 1 2 2 2 3 4 2.76 14 19 1 14

Lake and Peninsula
Borough

4 4 4 4 4 3 4 4 3.92 1 1 7 1

West Bethel Census Area 4 2 2 4 2 1 4 3 3.01 11 10 15 11
Bristol Bay Borough 3 4 4 4 4 1 3 3 3.18 7 3 20 7
Dillingham Census Area 3 3 3 3 4 1 3 3 3.18 7 3 20 7
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Total picture of risk

Alaska’s southern rural areas are likely at the highest risk from
OA due to a confluence of factors, including: subsistence fishing for
nearshore species like clams, crabs, and salmon, more rapid pro-
jected OA, lower industry diversity, economic dependence on fish-
ery harvests, lower income, and higher food prices (Fig. 11). In
particular, several areas in southeast Alaska (Wrangell City and
Borough, Petersburg Census Area, and the City and Borough of
Sitka) and southwest Alaska (Lake and Peninsula Borough) had
scores of 3 or 4 for multiple components of the final index
(Fig. 11). Even if urban areas have one or two strong risk indicators
(e.g. Anchorage has risk associated with the high value of OA-vul-
nerable species and a faster projected change in ocean chemistry),
they are offset by higher job diversity and higher overall regional
income and job opportunities. This outcome is the same if adaptive
capacity components are weighted evenly and if shellfish and sal-
mon are weighted evenly. This trend, where more rural areas that
have lower adaptive capacity are also more dependent on species
highly susceptible to OA, matches the global trends observed by
Cooley et al. (2012) for OA, Allison et al. (2009) for climate change,
and Halpern et al. (2012) for ocean health and benefits overall.

Limitations of this study

Studies of human risk from global ocean changes are still at an
early stage, and it is necessary to encompass a great deal of uncer-
tainty in these studies. By focusing on OA, the path from marine
biogeochemical change to human consequences seems fairly
straightforward. However, there are uncertainties associated with
the chemistry projections we used, the biological responses to
OA, and the human community’s response to changing marine har-
vests. Here we explore these factors and discuss them relative to
the state of ocean acidification science.

Marine chemistry forecasts from a global ocean model are gen-
erally regarded as good representations of future conditions on the
basin-scale, but for coastal systems, the accuracy of these forecasts
is probably lower. As described in the previous sections, shallow,
coastally influenced water near shore is subject to multiple pH-
altering processes, and time series of pH and other carbonate sys-
tem parameters in these areas are marked by spatial and temporal
variability that is many orders of magnitude greater than that
observed at open ocean time-series stations (e.g. Bates et al.,
2012; Dore et al., 2009). This variability comes from biological pro-
duction and respiration, upwelling, ice melt, and river runoff, none
of which are captured in detail by the model projections used here,
which show only future mean trends at the surface. Like other
regions, it is very likely that Alaskan coastal marine systems
already experience temporarily lower pH and saturation state as
part of natural variability, and will continue to do so as the mean
declines due to atmospheric CO2. For now, the magnitude of pH
and X variability experienced by most coastal systems is not well
known until enough time-series data are gathered at nearshore
locations.

In addition, the ways in which responses of individual organ-
isms to OA translate into population- and ecosystem-scale
responses are still unclear. We have only an initial but growing
understanding of which aspects of OA are important for marine
organisms: change in pH, carbonate ion level, saturation horizon
depth, pCO2, seasonal variability, phenology mismatch with sea-
sonal life cycle cues or predator–prey interactions, biogeographic
shifts away from appropriate benthic habitat, and so on. We
assumed that negative responses at the individual level would
translate to some degree of negative response in productivity at
the population scale. Certainly this has been demonstrated with
the study of bivalve mollusks, which originally were reported to
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calcify more slowly based on studies of two species (Gazeau
et al., 2007; Kurihara et al., 2007), and which are now understood
to display a range of negative population-scale responses to OA,
including decreased reproduction, delayed development, and
lower survival, as well as lower calcification (Kroeker et al.,
2013b), and ecosystem-scale shifts away from calcifying species
(Hall-Spencer et al., 2008; Kroeker et al., 2013a; Wootton et al.,
2008). Meta-analyses support the inference that individual Alaskan
mollusks are more likely than not to suffer from OA (Kroeker et al.,
2013b), but whether whole populations of harvested clams and
scallops are likely to decline as a result of OA is still not well
known. Likewise, the population-scale or lifetime consequences
of OA on red king crab and Tanner crab are still not known, despite
the recent reports of individual effects (Long et al., 2013a,b). It is
entirely possible that commercially or nutritionally important
Alaskan species may be able to tolerate or adapt to lower pH, lower
carbonate ion conditions, and this analysis does not account for
that possibility. A different approach using individual-based mod-
els including their physiological responses would probably be nec-
essary to do so. As more experimental data become available we
will also likely understand which is more important for high-lati-
tude species: the absolute or the relative change in pH and X.
We will also be able to better estimate the consequences of indi-
rect trophic and habitat effects, such as the salmon-pteropod sce-
nario we explored here and the association of many Alaskan
finfish with deep-water corals that we did not explore. Additional
studies may also provide insight on whether market characteristics
of harvests, like meat weight, appearance, and time to harvest, will
change owing to OA.

To quantify risk based on current human use patterns of marine
resources also assumes that humans’ use of these resources is
fixed, which it is not. But by incorporating multiple indicators of
exposure (economic, nutritional) and of vulnerability (adaptive
capacity, degree of dependence), which reflect more systemic
aspects of the social–ecological system, we attempt to provide a
snapshot of risk that has enough detail to encourage a harder look
at the most important factors in subsequent studies. We also expe-
rienced a challenge in aligning the boundaries of socio-economic
data with fisheries/ecosystem data, and then with oceanographic
data: relevant datasets are collected using different geographic
divisions, units (per capita vs. percent vs. total), and on different
timescales (annually, every few years, decadally). Analysis of
another vulnerability index indicated that scale affected the results
of the overall index (Schmidtlein et al., 2008). We attempted to
close gaps using average values where possible, and used the most
updated information available in every case.

The indicators of adaptive capacity used here also have signifi-
cant uncertainty associated with them. First, per capita income
may be highly endogenous because it is built on fish income. Sec-
ond, job diversity and total regional income in many areas may be
endangered from declining oil production or bolstered by new
events like natural gas exports. Because Alaska’s economy is an
energy export economy, climate change could affect the entire
economy via climate policy: a carbon tax would depress the value
of exported oil. (Conversely, limiting CO2 emissions via a carbon
tax or other means could decrease OA and its effect on the marine
resources being studied.) All of these factors add uncertainty to any
measurement of adaptive capacity.

Building a more resilient social–ecological system in Alaska

Alaskan commercial fisheries have a long history of opportunis-
tically switching to different species based on availability and mar-
ketability, suggesting the socio-economic system may have some
ability to adapt to future conditions. An example of this is the
shrimp fishery, where shrimping in the Gulf of Alaska was a major
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commercial and subsistence resource until the 1980s when an eco-
system change (e.g. Anderson and Piatt, 1999) caused the fishery to
completely crash. Communities throughout the region were able to
shift to ground/finfish fishing rather quickly.

A far more ominous example, though, is what occurred in
Prince William Sound, where herring supported a major fishery
until the early 1990s. It has been suggested that the 1989 Exxon
Valdez oil spill initiated a decline in herring abundance (Thorne
and Thomas, 2008). However, other analyses suggest that the
population collapse in 1993, four years after the spill, was
triggered when poor nutritional condition of herring, brought
about by low zooplankton production, increased the susceptibility
of herring to disease, possibly exacerbated by the stress of low
winter temperatures (Pearson et al., 1999). Regardless of the
underlying cause, the herring population has yet to recover and
the fishery in Prince William Sound has been closed for 17 of
the last 23 years (Pearson et al., 2012). The loss of this fishery cost
the region millions of dollars, thousands of jobs, and the loss of a
reliable subsistence food source. Many communities, especially
those that were heavily dependent on the herring fishery, went
into sharp decline and some small towns and village shut down
completely.

The example of the region’s herring loss, taken together with
the community index data presented here (Table 4; Fig. 11), clearly
demonstrates the need for commercial diversification, particularly
in southeast and southwest Alaska. This may involve looking to
other sectors, like exploiting other resources (e.g. fur seals, gold,
timber, oil, and natural gas) or encouraging other industries. Many
towns and villages throughout the state are facing multiple chal-
lenges, including rising food and energy costs, loss of revenue from
declines in oil and gas production, and declining populations. OA
may be yet another challenge to these communities, adding
another stressor to a region already at socio-economic risk.
Please cite this article in press as: Mathis, J.T., et al. Ocean acidification risk asse
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Conclusions

The outcomes from this risk assessment concerning ocean acid-
ification’s potential to affect Alaska’s fishery sector can inform pol-
icies and guide future scientific studies of the social–ecological
system that depends on marine resources. While we recognize that
the index developed here is an intermediate step toward our full
understanding of the economic and societal consequences of OA,
it does provide valuable insights on social vulnerability. Commu-
nity- or state-scale policies offer numerous opportunities to combat
regional processes (e.g. fertilizer runoff, atmospheric emissions of
nitrogen species) that worsen acidification, but only when the con-
tributing factors are well understood. In this study, we sought to
identify areas of the social–ecological system that are most vulner-
able (i.e. the components of the final index with highest scores); the
entire risk of the system could be decreased by the application of
localized policies designed to build adaptive capacity, decrease
exposure, or distribute risk where those factors were dominating
the degree of vulnerability. From this analysis, it is evident that risk
assessments offer more thorough decision-relevant information
because they provide insight into the interaction of social, eco-
nomic, and natural components instead of just one facet.

In Alaska, plans to confront OA can be made that address the
natural and the social system by dealing with aspects of the hazard,
exposure, and community sensitivity. To address the hazard, which
is primarily associated with the natural environment, continued
monitoring of conditions in Alaska’s nearshore regions is an impor-
tant response. This will add important regional specifics to the gen-
eral picture currently available from ocean model projections, and
identify which oceanographic processes are most important in
driving regional OA. To address exposure to the hazard, productive
responses would be most effective in southern and western Alaska,
where human dependence on OA-susceptible marine resources is
ssment for Alaska’s fishery sector. Prog. Oceanogr. (2014), http://dx.doi.org/
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highest (Fig. 11). These responses might encourage diversification
of fisheries activities, exploiting a broader range of species, not just
those that are OA-susceptible. Ultimately, the strategies to mitigate
and adapt/prepare for OA impacts must be developed by the com-
munities themselves. To foster participation in such planning, res-
idents and other stakeholders in vulnerable communities must
first be educated about this emerging environmental challenge,
then be permitted to develop response strategies that incorporate
community values and are context- and situation appropriate. To
reduce community vulnerability, factors that lower adaptive
capacity, such as low income, nutritional status, educational
attainment, or industry diversity, must be addressed. These factors
create vulnerability to many environmental and social problems
beyond OA, so addressing them could provide overall benefits. In
Alaska, where dependence on marine resources is strong, tradi-
tional, and very deep-rooted, attempting to reduce risk from OA
or any other marine-related type of global change simply by
decreasing dependence on marine resources may be a poor fit.
Instead, users and decision makers must consider the elements
that contribute to risk, as well as those that offset it, and attempt
to choose a path that optimizes these yet retains traditional and
contemporary uses of these valuable marine resources.
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